Decentralized Energy Management System in Microgrid Considering Uncertainty and Demand Response

نویسندگان

چکیده

Smart energy management and control systems can improve the efficient use of electricity maintain balance between supply demand. This paper proposes modeling a decentralized system (EMS) to reduce operation costs under renewable generation load uncertainties. There are three stages proposed strategy. First, this applies an autoregressive moving average (ARMA) model for forecasting PV wind generations as well power Second, optimal scheduling process is designed minimize operating costs. The well-known algorithm particle swarm optimization (PSO) applied provide among WT systems, fuel-based units, required from main grid. Third, demand response (DR) program introduced shift flexible in microgrid achieve active system. Simulation results demonstrate performance method using forecast data hourly profile. simulation show that cost worst-case uncertainty. load-shifting reduced peak by 4.3% filled valley 5% provides minimum total with framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Economic Operation and Battery Sizing for Microgrid Energy Management Systems Considering Demand Response

Microgrids (MGs) contain a diverse mix of energy resources to provide safe and secure power to the consumers. Batteries are utilized in MGs for further energy security assurance as well as cost minimization. In this paper, an efficient approach is introduced for simultaneous energy management and optimal battery sizing to accomplish economic MG operation. Also, demand response programs are empl...

متن کامل

Fuel Consumption Reduction and Energy Management in Stand-Alone Hybrid Microgrid under Load Uncertainty and Demand Response by Linear Programming

A stand-alone microgrid usually contains a set of distributed generation resources, energy storage system and loads that can be used to supply electricity of remote areas. These areas are small in terms of population and industry. Connection of these areas to the national distribution network due to the high costs of constructing transmission lines is not economical. Optimal utilization and eco...

متن کامل

Day-ahead energy management of a microgrid with renewable energy resources and CHP units, considering demand response

Global warming, environmental pollution, fossil resources reduction, the increased demand and price of energy carriers, and various international social and political consequences are among the problems of traditional energy generation and distribution system. In the traditional generation systems, about two-thirds of energy is wasted and the presence of scattered energy resources such as photo...

متن کامل

Transmission Congestion Management Considering Uncertainty of Demand Response Resources’ Participation

Under the smart grid environment, demand response resources (DRRs) are introduced as a virtual power plant to enhance power system adequacy. DRRs often fail to reduce their load due to some external factors. In this paper, a reliability model of a DRR is constructed as multi-state conventional generation units, where the probability, frequency of occurrence, and departure rate of each state can...

متن کامل

Optimal Sizing of Energy Storage System in A Renewable-Based Microgrid Under Flexible Demand Side Management Considering Reliability and Uncertainties

Utilization of energy storage system (ESS) in microgrids has turned to be necessary in recent years and now with the improvement of storage technologies, system operators are looking for an exact modeling and calculation for optimal sizing of ESS. In the proposed paper, optimal size of ESS is determined in a microgrid considering demand response program (DRP) and reliability criterion. Both lar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2023

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics12010237